Addiction-induced cognitive impairment, the case of methamphetamine.

Authors

  • Pedro Antonio Fernández Ruiz Facultad de Ciencias de la Salud, Universidad Autónoma de Baja California
  • Nereyda Cruz-Zúñiga
  • Carmen Ivette Hernández Vergara
  • Julio Román Martínez Alvarado
  • Yolanda Viridiana Chávez Flores
  • Ana Gabriela Magallanes-Rodríguez

DOI:

https://doi.org/10.56935/hij.v1i2.18

Keywords:

Methamphetamine, Drug Abstinence, Cognitive Function

Abstract

A documentary research was conducted to determine the relationship between methamphetamine abstinence time and cognitive performance in methamphetamine users. The purpose of this study is to know the existing difference between methamphetamine abstinence time and cognitive performance in a methamphetamine user population. The findings suggest significant differences in cognitive performance in methamphetamine withdrawal users compared to non-users. Particularly, a weakening of the prefrontal regions in charge of executive functions and a memory deficit correlated with dopamine deficits were observed. As for the altered functions, despite the heterogeneity of the results, we see that there is a low performance in inhibitory control, speed of execution and information processing. In addition to these deficits, there is also a problem in impulse control and social cognition.

References

Baddeley A. D. (2000). The episodic buffer: a new component of working memory. Trends Cogn. Sci., 4, 417-23. DOI: https://doi.org/10.1016/S1364-6613(00)01538-2

Baddeley A. D. (2003). Working memory: looking back and looking forward. Nature reviews. Neuroscience, 4, 829-839. DOI: https://doi.org/10.1038/nrn1201

Baddeley A. D. (2010). Working memory. Current Biology, 20(4), 136-140. DOI: https://doi.org/10.1016/j.cub.2009.12.014

Berke J. D. y Hyman S. E. (2000). Addiction, dopamine, and the molecular mechanisms of memory. Neuron 25: 515–532. DOI: https://doi.org/10.1016/S0896-6273(00)81056-9

Bonci A., Bernardi G., Grillner P. y Mercuri N. B. (2003). The dopamine-containing neuron: maestro or simple musician in the orchestra of addiction?. Trends Pharmacol Sci., 24, 172–177. DOI: https://doi.org/10.1016/S0165-6147(03)00068-3

Brailowsky, S. (1995). Las sustancias de los sueños: neuropsicofarmacalogía. México: 3ra Ed.

Childress A. R., McLellan A. T., Ehrman R. y O’Brien C. P. (1988). Classically conditioned responses in opioid and cocaine dependence: a role in relapse?. National Institute on Drug Abuse, 84, 25–43. DOI: https://doi.org/10.1037/e496602006-002

Conde I. L., Ustarroz J. T., Landa N. y Lopez J. J. (2005) Deshabituación de drogas y funcionamiento cerebral: una visión integradora, 17(2), 121-129 DOI: https://doi.org/10.20882/adicciones.377

Could, T. J. (2011). Addiction and Cognition. Addiction, Science and clinical Review.

Diamond A. (2013). Executive Functions. Annu Rev Psychol, 64, 135–168. DOI: https://doi.org/10.1146/annurev-psych-113011-143750

Davidson, M. C., Amso, D., Anderson, L. C., y Diamond, A. (2006). Development of cognitive control and executive functions from 4 to 13 years: Evidence from manipulations of memory, inhibition, and task switching. Neuropsychology, 44, 2037-2078. DOI: https://doi.org/10.1016/j.neuropsychologia.2006.02.006

Diamond A. (2016). Why improving and assessing executive functions early in life is critical. En Griffin J. A., McCardle P. y Freund L. S. (Ed.), Executive Function in Preschool-Age Children: integrating measurement, neurodevelopment,and translational research. (11-43). Washington: American Psychological Association. DOI: https://doi.org/10.1037/14797-002

Dean A. C., Groman S. M., Morales A. M. y London E. D. (2013). An Evaluation of the Evidence that Methamphetamine Abuse Causes Cognitive Decline in Humans Neuropsychopharmacology. 38, 259–274 DOI: https://doi.org/10.1038/npp.2012.179

Di Chiara G. (2002). Nucleus accumbens shell and core dopamine: differential role in behavior and addiction. Behav Brain Res, 137: 75-114. DOI: https://doi.org/10.1016/S0166-4328(02)00286-3

Encuesta Nacional de Adicciones México (ENA) (2011).

Encuesta Nacional de Consumo de Drogas, Alcohol y Tabaco México (ENCODAT) (2016).

Ersche K. D., Williams G. B., Robbins T. W. y Bullmore E. T. (2013). Meta-analysis of structural brain abnormalities associated with stimulant drug dependence and neuroimaging of addiction vulnerability and resilience. Current Opinion in Neurobiology, 23(4), 615-624. DOI: https://doi.org/10.1016/j.conb.2013.02.017

Everitt, B. J., y Robbins, T. W. (2013). From the ventral to the dorsal striatum: devolving views of their roles in drug addiction. Neurosci. Biobehav, Rev., 37(9), 1946–1954. DOI: https://doi.org/10.1016/j.neubiorev.2013.02.010

Farhadian, M., Akbarfahimi, M., Hassani Abharian, P., Hosseini, S. G., Shokri, S. (2017). Assessment of Executive Functions in Methamphetamine-addicted Individuals: Emphasis on Duration of Addiction and Abstinence. Basic and Clinical Neuroscience, 8 (2), 147-154. DOI: https://doi.org/10.18869/nirp.bcn.8.2.147

Goldman-Rakic, P. S. (1996). The prefrontal landscape: Implications of functional architecture for understanding human mentation and the central executive. Philosophical Transactions of the Royal Society of London, 351, 1445–1453. DOI: https://doi.org/10.1098/rstb.1996.0129

Goldstein R. Z. y Volkow N. D. (2011). Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nat Rev Neurosci, 12: 652-69. DOI: https://doi.org/10.1038/nrn3119

Hart, C. L., Marvin, C. B., Silver R. y Smith E. E. (2012). Is Cognitive Functioning Impaired in Methamphetamine Users? A Critical Review Neuropsychopharmacology, 37, 586–608. DOI: https://doi.org/10.1038/npp.2011.276

Hyman S. E., Malenka R. C. y Nestler E.J. (2006). Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci, 29, 565–598. DOI: https://doi.org/10.1146/annurev.neuro.29.051605.113009

Iudicello J. E., Woods S. P., Vigil O., Scott J. C., Cherner M., Heaton R. K. y otros (2010). Longer term improvement in neurocognitive functioning and affective distress among methamphetamine users who achieve stable abstinence. J Clin Exp Neuropsychol 32: 704–718. DOI: https://doi.org/10.1080/13803390903512637

Johanson C. E., Frey K. A., Lundahl L. H., Keenan P., Lockhart N., Roll J. Galloway G. P., Koeppe R. A. Kilbourn M. R., Robbins T. y Schuster C. R. (2006). Cognitive function and nigrostriatal markers in abstinent methamphetamine abusers. Psychopharmacology, 185, 327–338. DOI: https://doi.org/10.1007/s00213-006-0330-6

Kessler, R. C., Amminger, G. P., Aguilar-Gaxiola, S., Alonso, J., Lee, S., y Ustun, T.B. (2007). Age of onset of mental disorders: a review of recent literature. Curr. Opin. Psychiatry, 20, 359–364. DOI: https://doi.org/10.1097/YCO.0b013e32816ebc8c

Koob, G. F., y LeMoal, M. (2001). Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology. 24:97–129. DOI: https://doi.org/10.1016/S0893-133X(00)00195-0

Koob G. F. (2004). Allostatic view of motivation: implications for psychopathology. Nebraska Symposium on Motivation. 50 pp 1–18.

Koob G. F. y Volkow N. (2010) Neurocircuitry of Addiction Neuropsychopharmacology Reviews, 35, 217–238. DOI: https://doi.org/10.1038/npp.2009.110

Koob G. F. (2013). Addiction is a reward deficit and stress surfeit disorder. Frontier in psychiatry. 4: 72 1 DOI: https://doi.org/10.3389/fpsyt.2013.00072

Koob G. F., Buck C. L., Cohen A., Edwards S., Park P. E., Schlosburg J. E., Schmeichel B., Vendruscolo L. F., Wade C. L., Whitfield Jr. T. W. y George O. (2014). Addiction as a Stress Surfeit Disorder. Neuropharmacology. 76 DOI: https://doi.org/10.1016/j.neuropharm.2013.05.024

Koob G. F. y Volkow N. (2016) Neurobiology of Addiction: a neurocircuitry analysis Lancet Psychiatry, 3, 760–773. DOI: https://doi.org/10.1016/S2215-0366(16)00104-8

Koob G. F. (2018). Anuncio de prensa y conferencia. Tijuana.

Kwako L. E. y Koob G. F. (2017). Neurobiology of Stress Neuroclinical Framework for the Role of Stress in Addiction. Chronic Stress. 1: 1–14 DOI: https://doi.org/10.1177/2470547017698140

Langleben D. D., Ruparel K., Elman I., Busch-Winokur S., Pratiwadi R., Loughead J. y otros (2008). Acute effect of methadone maintenance dose on brain FMRI response to heroin-related cues. Am J Psychiatry, 165, 390–394. DOI: https://doi.org/10.1176/appi.ajp.2007.07010070

Lüscher C. y Malenka R. C. (2011). Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling. Neuron 69: 650–663. DOI: https://doi.org/10.1016/j.neuron.2011.01.017

Miyake A., Friedman N. P., Emerson M. J., Witzki A. H., Howerter A. y Wager T. D. (2000). The Unity and Diversity of Executive Functions and Their Contributions to Complex ‘‘Frontal Lobe’’ Tasks: A Latent Variable Analysis. Cognitive Psychology, 41, 49–100. DOI: https://doi.org/10.1006/cogp.1999.0734

Miyake A. y Friedman N. P. (2012). The Nature and Organization of Individual Differences in Executive Functions: Four General Conclusions. Psychological Science, 21(1), 8 –14. DOI: https://doi.org/10.1177/0963721411429458

McClernon F. J., Kozink R. V., Lutz A. M. y Rose J. E. (2009). 24-h smoking abstinence potentiates fMRI-BOLD activation to smoking cues in cerebral cortex and dorsal striatum. Psychopharmacology, 204, 25–35. DOI: https://doi.org/10.1007/s00213-008-1436-9

Nestor L. J., Ghahremani D. G., Monterosso J., y London E.D. (2011). Prefrontal hypoactivation during cognitive control in early abstinent methamphetamine-dependent. Subjects. Psychiatry Res., 194(3), 287–295. DOI: https://doi.org/10.1016/j.pscychresns.2011.04.010

Nordahl T. E., Salo R. y Leamon M. (2003). Neuropsychological effects of chronic methamphetamine use on neurotransmitters and cognition: a review. J Neuropsychiatry Clin Neurosci, 15, 317-325. DOI: https://doi.org/10.1176/jnp.15.3.317

Oficina de Naciones Unidas Contra las Drogas y el Delito y Organización de los Estados Americanos: Estimulantes de tipo anfetamínico en las Américas: terminología y desafíos relacionados con la recopilación de datos (UNODC y OEA, 2014)

Oficina de Naciones Unidas Contra las Drogas y el Delito: Informe anual (UNODC, 2016)

Panenka, W. J., Procyshyn, R. M., Lecomt, T., MacEwan, G. W., Flynn, S. W., Honer, W. G. y Barr, A. M. (2013). Methamphetamine use: A comprehensive review of molecular, preclinical and clinical findings. Drug and Alcohol Dependence 129 167– 179 DOI: https://doi.org/10.1016/j.drugalcdep.2012.11.016

Potvina, S. Pelletier, Grota, J. S., Héberta, C., Barr, A. y Lecomte, T. (2018). Cognitive deficits in individuals with methamphetamine use disorder: A meta-analysis. Addictive Behaviors 80 154–160 DOI: https://doi.org/10.1016/j.addbeh.2018.01.021

Robins, L.N., y Przybeck, T. R. (1985). Age of onset of drug use as a factor in drug and other disorders. NIDA Res. Monogr, 56, 178–192. DOI: https://doi.org/10.1037/e472252004-001

Salo R., Nordahl T.E., Galloway G.P., Moore C.D., Waters C. y Leamon M. H. (2009). Drug Abstinence and Cognitive Control in Methamphetamine Dependent Individuals. J Subst Abuse Treat, 37(3), 292–297. DOI: https://doi.org/10.1016/j.jsat.2009.03.004

Saddoris M. P., Cacciapaglia F., Wightman R. M. y Carelli R. M. (2015). Differential dopamine release dynamics in the nucleus accumbens core and shell reveal complementary signals for error prediction and incentive motivation. J Neurosci; 35: 11572-82. DOI: https://doi.org/10.1523/JNEUROSCI.2344-15.2015

Schultz W. (2002). Getting formal with dopamine and reward. Neuron, 36: 241-63. DOI: https://doi.org/10.1016/S0896-6273(02)00967-4

Simon S. L., Dacey J., Glynn S., Rawson R. y Ling W. (2004). The effect of relapse on cognition in abstinent methamphetamine abusers. J Subst Abuse Treat, 27, 59–66. DOI: https://doi.org/10.1016/j.jsat.2004.03.011

Simon, S. L., Dean, A. C., Cordova, X., Monterosso, J. R. y London, E. D. (2010). Methamphetamine dependence and neuropsychological functioning: evaluating change during early abstinence. Journal of studies on alcohol and drugs. 71 (3). DOI: https://doi.org/10.15288/jsad.2010.71.335

Solomon R. L. y Corbit J. D. (1974). An opponent-process theory of motivation. I. Temporal dynamics of affect. Psycholl Rev., 81(2), 119-45. DOI: https://doi.org/10.1037/h0036128

Smith, E. E.,y Jonides, J. (1999). Storage and executive processes in the frontal lobes. Science, 283, 1657–1661. DOI: https://doi.org/10.1126/science.283.5408.1657

Verdejo-Garcia, A. y Bechara, A. (2010) Neuropsicología de las funciones ejecutivas. Psicothema, 22(2), 227-235.

Trifilieff P, Feng B, Urizar E, et al (2013). Increasing dopamine D2 receptor expression in the adult nucleus accumbens enhances motivation. Mol Psychiatry, 18: 1025-33. DOI: https://doi.org/10.1038/mp.2013.57

Ungless M. A., Whistler J. L., Malenka R. C. y Bonci A. (2001). Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons. Nature, 411, 583–587. DOI: https://doi.org/10.1038/35079077

Volkow N. D., Wang G. J., Fowler J. S., Logan J., Gatley S. J., Hitzemann R. y otros (1997). Decreased striatal dopaminergic responsiveness in detoxified cocaine-dependent subjects. Nature, 386, 830–833. DOI: https://doi.org/10.1038/386830a0

Volkow N. D., Wang G. J., Fowler J. S., Franceschi D., Thanos P.K., Wong C, y otros (2000). Cocaine abusers show a blunted response to alcohol intoxication in limbic brain regions. Life Sci., 66, 161–167. DOI: https://doi.org/10.1016/S0024-3205(00)00421-5

Volkow N. D., Fowler J. S. y Wang G. J. (2003). The addicted human brain: insights from imaging. The Journal of Clinical Investigation, 111 (10): New York. DOI: https://doi.org/10.1172/JCI18533

Volkow N. D., Wang G. J., Telang F., Fowler J. S., Logan J., Jayne M. y otros (2007). Profound decreases in dopamine release in striatum in detoxified alcoholics: possible orbitofrontal involvement. J Neurosci, 27, 12700–12706. DOI: https://doi.org/10.1523/JNEUROSCI.3371-07.2007

Volkow N. D. y Morales M. (2015). The Brain on Drugs: From Reward to Addiction. Cell. 162 (4):712-25. DOI: https://doi.org/10.1016/j.cell.2015.07.046

Volkow N. D., Koob, G. F. y McLellan, A.T. (2016). Neurobiologic Advances from the Brain Disease Model of Addiction. The New England Journal of Medicine. 374, 4 DOI: https://doi.org/10.1056/NEJMra1511480

Wang, G. J., Volkow, N. D., Chang, L., Miller, E., Sedler, M., Hitzemann, R., et al. (2004). Partial recovery of brain metabo­lism in methamphetamine abusers after protracted abstinence. American Journal of Psychiatry, 161(2), 242-8. DOI: https://doi.org/10.1176/appi.ajp.161.2.242

Wang G., Shi J., Chen N., Xu L., Li J., Li P., Sun Y. y Lu L. (2013) Effects of Length of Abstinence on Decision-Making and Craving in Methamphetamine Abusers. Pos One 8 (7): e68791 DOI: https://doi.org/10.1371/journal.pone.0068791

Weber E., Blackstone K., Iudicello J. E., Morgan E. E., Grant I., Moore D. J. y Woods S. P. (2012). Neurocognitive deficits are associated with unemployment in chronic methamphetamine users. Drug and Alcohol Dependence, 125, 146– 153. DOI: https://doi.org/10.1016/j.drugalcdep.2012.04.002

Wise R. A. y Koob G. F. (2014). The Development and Maintenance of Drug Addiction. Neuropsychopharmacology. 39; 254–262 DOI: https://doi.org/10.1038/npp.2013.261

Zombeck J. A., Chen G. T., Johnson Z. V. (2008). Neuroanatomical specificity of conditioned responses to cocaine versus food in mice. Physiol Behav, 93(3), 637-650. DOI: https://doi.org/10.1016/j.physbeh.2007.11.004

Published

2023-10-11

How to Cite

Fernández Ruiz, P. A., Cruz-Zúñiga, N., Hernández Vergara, C. I., Martínez Alvarado, J. R., Chávez Flores, Y. V., & Magallanes-Rodríguez, A. G. (2023). Addiction-induced cognitive impairment, the case of methamphetamine. Horizon Interdisciplinary Journal, 1(2), 45–53. https://doi.org/10.56935/hij.v1i2.18

Issue

Section

Perspective

Categories

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.