Deterioro cognitivo inducido por la adicción, el caso de la metanfetamina.

Autores/as

  • Pedro Antonio Fernández Ruiz Facultad de Ciencias de la Salud, Universidad Autónoma de Baja California
  • Nereyda Cruz-Zúñiga
  • Carmen Ivette Hernández Vergara
  • Julio Román Martínez Alvarado
  • Yolanda Viridiana Chávez Flores
  • Ana Gabriela Magallanes-Rodríguez

DOI:

https://doi.org/10.56935/hij.v1i2.18

Palabras clave:

Metanfetamina, Abstinencia de drogas, Función Cognitiva

Resumen

Se realizó una investigación documental para conocer la relación existente entre  el tiempo de abstinencia a metanfetaminas y el desempeño cognitivo en consumidores de metanfetaminas. El propósito de este estudio es conocer la diferencia existente entre el tiempo de abstinencia a metanfetaminas y el desempeño cognitivo en población consumidora. Los hallazgos sugieren diferencias significativas en el desempeño cognitivo en consumidores en abstinencia a metanfetaminas en comparación a personas no consumidoras. Particularmente, se aprecia un debilitamiento de las regiones prefrontales encargadas de las funciones ejecutivas y un déficit de memoria correlacionado con déficit de dopamina. En cuanto a las funciones alteradas, a pesar de la heterogeneidad de los resultados, vemos que existe un bajo desempeño en el control inhibitorio, velocidad de ejecución y procesamiento de la información. Además a estos déficits se agrega también un problema de control de impulsos y cognición social.

Citas

Baddeley A. D. (2000). The episodic buffer: a new component of working memory. Trends Cogn. Sci., 4, 417-23. DOI: https://doi.org/10.1016/S1364-6613(00)01538-2

Baddeley A. D. (2003). Working memory: looking back and looking forward. Nature reviews. Neuroscience, 4, 829-839. DOI: https://doi.org/10.1038/nrn1201

Baddeley A. D. (2010). Working memory. Current Biology, 20(4), 136-140. DOI: https://doi.org/10.1016/j.cub.2009.12.014

Berke J. D. y Hyman S. E. (2000). Addiction, dopamine, and the molecular mechanisms of memory. Neuron 25: 515–532. DOI: https://doi.org/10.1016/S0896-6273(00)81056-9

Bonci A., Bernardi G., Grillner P. y Mercuri N. B. (2003). The dopamine-containing neuron: maestro or simple musician in the orchestra of addiction?. Trends Pharmacol Sci., 24, 172–177. DOI: https://doi.org/10.1016/S0165-6147(03)00068-3

Brailowsky, S. (1995). Las sustancias de los sueños: neuropsicofarmacalogía. México: 3ra Ed.

Childress A. R., McLellan A. T., Ehrman R. y O’Brien C. P. (1988). Classically conditioned responses in opioid and cocaine dependence: a role in relapse?. National Institute on Drug Abuse, 84, 25–43. DOI: https://doi.org/10.1037/e496602006-002

Conde I. L., Ustarroz J. T., Landa N. y Lopez J. J. (2005) Deshabituación de drogas y funcionamiento cerebral: una visión integradora, 17(2), 121-129 DOI: https://doi.org/10.20882/adicciones.377

Could, T. J. (2011). Addiction and Cognition. Addiction, Science and clinical Review.

Diamond A. (2013). Executive Functions. Annu Rev Psychol, 64, 135–168. DOI: https://doi.org/10.1146/annurev-psych-113011-143750

Davidson, M. C., Amso, D., Anderson, L. C., y Diamond, A. (2006). Development of cognitive control and executive functions from 4 to 13 years: Evidence from manipulations of memory, inhibition, and task switching. Neuropsychology, 44, 2037-2078. DOI: https://doi.org/10.1016/j.neuropsychologia.2006.02.006

Diamond A. (2016). Why improving and assessing executive functions early in life is critical. En Griffin J. A., McCardle P. y Freund L. S. (Ed.), Executive Function in Preschool-Age Children: integrating measurement, neurodevelopment,and translational research. (11-43). Washington: American Psychological Association. DOI: https://doi.org/10.1037/14797-002

Dean A. C., Groman S. M., Morales A. M. y London E. D. (2013). An Evaluation of the Evidence that Methamphetamine Abuse Causes Cognitive Decline in Humans Neuropsychopharmacology. 38, 259–274 DOI: https://doi.org/10.1038/npp.2012.179

Di Chiara G. (2002). Nucleus accumbens shell and core dopamine: differential role in behavior and addiction. Behav Brain Res, 137: 75-114. DOI: https://doi.org/10.1016/S0166-4328(02)00286-3

Encuesta Nacional de Adicciones México (ENA) (2011).

Encuesta Nacional de Consumo de Drogas, Alcohol y Tabaco México (ENCODAT) (2016).

Ersche K. D., Williams G. B., Robbins T. W. y Bullmore E. T. (2013). Meta-analysis of structural brain abnormalities associated with stimulant drug dependence and neuroimaging of addiction vulnerability and resilience. Current Opinion in Neurobiology, 23(4), 615-624. DOI: https://doi.org/10.1016/j.conb.2013.02.017

Everitt, B. J., y Robbins, T. W. (2013). From the ventral to the dorsal striatum: devolving views of their roles in drug addiction. Neurosci. Biobehav, Rev., 37(9), 1946–1954. DOI: https://doi.org/10.1016/j.neubiorev.2013.02.010

Farhadian, M., Akbarfahimi, M., Hassani Abharian, P., Hosseini, S. G., Shokri, S. (2017). Assessment of Executive Functions in Methamphetamine-addicted Individuals: Emphasis on Duration of Addiction and Abstinence. Basic and Clinical Neuroscience, 8 (2), 147-154. DOI: https://doi.org/10.18869/nirp.bcn.8.2.147

Goldman-Rakic, P. S. (1996). The prefrontal landscape: Implications of functional architecture for understanding human mentation and the central executive. Philosophical Transactions of the Royal Society of London, 351, 1445–1453. DOI: https://doi.org/10.1098/rstb.1996.0129

Goldstein R. Z. y Volkow N. D. (2011). Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nat Rev Neurosci, 12: 652-69. DOI: https://doi.org/10.1038/nrn3119

Hart, C. L., Marvin, C. B., Silver R. y Smith E. E. (2012). Is Cognitive Functioning Impaired in Methamphetamine Users? A Critical Review Neuropsychopharmacology, 37, 586–608. DOI: https://doi.org/10.1038/npp.2011.276

Hyman S. E., Malenka R. C. y Nestler E.J. (2006). Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci, 29, 565–598. DOI: https://doi.org/10.1146/annurev.neuro.29.051605.113009

Iudicello J. E., Woods S. P., Vigil O., Scott J. C., Cherner M., Heaton R. K. y otros (2010). Longer term improvement in neurocognitive functioning and affective distress among methamphetamine users who achieve stable abstinence. J Clin Exp Neuropsychol 32: 704–718. DOI: https://doi.org/10.1080/13803390903512637

Johanson C. E., Frey K. A., Lundahl L. H., Keenan P., Lockhart N., Roll J. Galloway G. P., Koeppe R. A. Kilbourn M. R., Robbins T. y Schuster C. R. (2006). Cognitive function and nigrostriatal markers in abstinent methamphetamine abusers. Psychopharmacology, 185, 327–338. DOI: https://doi.org/10.1007/s00213-006-0330-6

Kessler, R. C., Amminger, G. P., Aguilar-Gaxiola, S., Alonso, J., Lee, S., y Ustun, T.B. (2007). Age of onset of mental disorders: a review of recent literature. Curr. Opin. Psychiatry, 20, 359–364. DOI: https://doi.org/10.1097/YCO.0b013e32816ebc8c

Koob, G. F., y LeMoal, M. (2001). Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology. 24:97–129. DOI: https://doi.org/10.1016/S0893-133X(00)00195-0

Koob G. F. (2004). Allostatic view of motivation: implications for psychopathology. Nebraska Symposium on Motivation. 50 pp 1–18.

Koob G. F. y Volkow N. (2010) Neurocircuitry of Addiction Neuropsychopharmacology Reviews, 35, 217–238. DOI: https://doi.org/10.1038/npp.2009.110

Koob G. F. (2013). Addiction is a reward deficit and stress surfeit disorder. Frontier in psychiatry. 4: 72 1 DOI: https://doi.org/10.3389/fpsyt.2013.00072

Koob G. F., Buck C. L., Cohen A., Edwards S., Park P. E., Schlosburg J. E., Schmeichel B., Vendruscolo L. F., Wade C. L., Whitfield Jr. T. W. y George O. (2014). Addiction as a Stress Surfeit Disorder. Neuropharmacology. 76 DOI: https://doi.org/10.1016/j.neuropharm.2013.05.024

Koob G. F. y Volkow N. (2016) Neurobiology of Addiction: a neurocircuitry analysis Lancet Psychiatry, 3, 760–773. DOI: https://doi.org/10.1016/S2215-0366(16)00104-8

Koob G. F. (2018). Anuncio de prensa y conferencia. Tijuana.

Kwako L. E. y Koob G. F. (2017). Neurobiology of Stress Neuroclinical Framework for the Role of Stress in Addiction. Chronic Stress. 1: 1–14 DOI: https://doi.org/10.1177/2470547017698140

Langleben D. D., Ruparel K., Elman I., Busch-Winokur S., Pratiwadi R., Loughead J. y otros (2008). Acute effect of methadone maintenance dose on brain FMRI response to heroin-related cues. Am J Psychiatry, 165, 390–394. DOI: https://doi.org/10.1176/appi.ajp.2007.07010070

Lüscher C. y Malenka R. C. (2011). Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling. Neuron 69: 650–663. DOI: https://doi.org/10.1016/j.neuron.2011.01.017

Miyake A., Friedman N. P., Emerson M. J., Witzki A. H., Howerter A. y Wager T. D. (2000). The Unity and Diversity of Executive Functions and Their Contributions to Complex ‘‘Frontal Lobe’’ Tasks: A Latent Variable Analysis. Cognitive Psychology, 41, 49–100. DOI: https://doi.org/10.1006/cogp.1999.0734

Miyake A. y Friedman N. P. (2012). The Nature and Organization of Individual Differences in Executive Functions: Four General Conclusions. Psychological Science, 21(1), 8 –14. DOI: https://doi.org/10.1177/0963721411429458

McClernon F. J., Kozink R. V., Lutz A. M. y Rose J. E. (2009). 24-h smoking abstinence potentiates fMRI-BOLD activation to smoking cues in cerebral cortex and dorsal striatum. Psychopharmacology, 204, 25–35. DOI: https://doi.org/10.1007/s00213-008-1436-9

Nestor L. J., Ghahremani D. G., Monterosso J., y London E.D. (2011). Prefrontal hypoactivation during cognitive control in early abstinent methamphetamine-dependent. Subjects. Psychiatry Res., 194(3), 287–295. DOI: https://doi.org/10.1016/j.pscychresns.2011.04.010

Nordahl T. E., Salo R. y Leamon M. (2003). Neuropsychological effects of chronic methamphetamine use on neurotransmitters and cognition: a review. J Neuropsychiatry Clin Neurosci, 15, 317-325. DOI: https://doi.org/10.1176/jnp.15.3.317

Oficina de Naciones Unidas Contra las Drogas y el Delito y Organización de los Estados Americanos: Estimulantes de tipo anfetamínico en las Américas: terminología y desafíos relacionados con la recopilación de datos (UNODC y OEA, 2014)

Oficina de Naciones Unidas Contra las Drogas y el Delito: Informe anual (UNODC, 2016)

Panenka, W. J., Procyshyn, R. M., Lecomt, T., MacEwan, G. W., Flynn, S. W., Honer, W. G. y Barr, A. M. (2013). Methamphetamine use: A comprehensive review of molecular, preclinical and clinical findings. Drug and Alcohol Dependence 129 167– 179 DOI: https://doi.org/10.1016/j.drugalcdep.2012.11.016

Potvina, S. Pelletier, Grota, J. S., Héberta, C., Barr, A. y Lecomte, T. (2018). Cognitive deficits in individuals with methamphetamine use disorder: A meta-analysis. Addictive Behaviors 80 154–160 DOI: https://doi.org/10.1016/j.addbeh.2018.01.021

Robins, L.N., y Przybeck, T. R. (1985). Age of onset of drug use as a factor in drug and other disorders. NIDA Res. Monogr, 56, 178–192. DOI: https://doi.org/10.1037/e472252004-001

Salo R., Nordahl T.E., Galloway G.P., Moore C.D., Waters C. y Leamon M. H. (2009). Drug Abstinence and Cognitive Control in Methamphetamine Dependent Individuals. J Subst Abuse Treat, 37(3), 292–297. DOI: https://doi.org/10.1016/j.jsat.2009.03.004

Saddoris M. P., Cacciapaglia F., Wightman R. M. y Carelli R. M. (2015). Differential dopamine release dynamics in the nucleus accumbens core and shell reveal complementary signals for error prediction and incentive motivation. J Neurosci; 35: 11572-82. DOI: https://doi.org/10.1523/JNEUROSCI.2344-15.2015

Schultz W. (2002). Getting formal with dopamine and reward. Neuron, 36: 241-63. DOI: https://doi.org/10.1016/S0896-6273(02)00967-4

Simon S. L., Dacey J., Glynn S., Rawson R. y Ling W. (2004). The effect of relapse on cognition in abstinent methamphetamine abusers. J Subst Abuse Treat, 27, 59–66. DOI: https://doi.org/10.1016/j.jsat.2004.03.011

Simon, S. L., Dean, A. C., Cordova, X., Monterosso, J. R. y London, E. D. (2010). Methamphetamine dependence and neuropsychological functioning: evaluating change during early abstinence. Journal of studies on alcohol and drugs. 71 (3). DOI: https://doi.org/10.15288/jsad.2010.71.335

Solomon R. L. y Corbit J. D. (1974). An opponent-process theory of motivation. I. Temporal dynamics of affect. Psycholl Rev., 81(2), 119-45. DOI: https://doi.org/10.1037/h0036128

Smith, E. E.,y Jonides, J. (1999). Storage and executive processes in the frontal lobes. Science, 283, 1657–1661. DOI: https://doi.org/10.1126/science.283.5408.1657

Verdejo-Garcia, A. y Bechara, A. (2010) Neuropsicología de las funciones ejecutivas. Psicothema, 22(2), 227-235.

Trifilieff P, Feng B, Urizar E, et al (2013). Increasing dopamine D2 receptor expression in the adult nucleus accumbens enhances motivation. Mol Psychiatry, 18: 1025-33. DOI: https://doi.org/10.1038/mp.2013.57

Ungless M. A., Whistler J. L., Malenka R. C. y Bonci A. (2001). Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons. Nature, 411, 583–587. DOI: https://doi.org/10.1038/35079077

Volkow N. D., Wang G. J., Fowler J. S., Logan J., Gatley S. J., Hitzemann R. y otros (1997). Decreased striatal dopaminergic responsiveness in detoxified cocaine-dependent subjects. Nature, 386, 830–833. DOI: https://doi.org/10.1038/386830a0

Volkow N. D., Wang G. J., Fowler J. S., Franceschi D., Thanos P.K., Wong C, y otros (2000). Cocaine abusers show a blunted response to alcohol intoxication in limbic brain regions. Life Sci., 66, 161–167. DOI: https://doi.org/10.1016/S0024-3205(00)00421-5

Volkow N. D., Fowler J. S. y Wang G. J. (2003). The addicted human brain: insights from imaging. The Journal of Clinical Investigation, 111 (10): New York. DOI: https://doi.org/10.1172/JCI18533

Volkow N. D., Wang G. J., Telang F., Fowler J. S., Logan J., Jayne M. y otros (2007). Profound decreases in dopamine release in striatum in detoxified alcoholics: possible orbitofrontal involvement. J Neurosci, 27, 12700–12706. DOI: https://doi.org/10.1523/JNEUROSCI.3371-07.2007

Volkow N. D. y Morales M. (2015). The Brain on Drugs: From Reward to Addiction. Cell. 162 (4):712-25. DOI: https://doi.org/10.1016/j.cell.2015.07.046

Volkow N. D., Koob, G. F. y McLellan, A.T. (2016). Neurobiologic Advances from the Brain Disease Model of Addiction. The New England Journal of Medicine. 374, 4 DOI: https://doi.org/10.1056/NEJMra1511480

Wang, G. J., Volkow, N. D., Chang, L., Miller, E., Sedler, M., Hitzemann, R., et al. (2004). Partial recovery of brain metabo­lism in methamphetamine abusers after protracted abstinence. American Journal of Psychiatry, 161(2), 242-8. DOI: https://doi.org/10.1176/appi.ajp.161.2.242

Wang G., Shi J., Chen N., Xu L., Li J., Li P., Sun Y. y Lu L. (2013) Effects of Length of Abstinence on Decision-Making and Craving in Methamphetamine Abusers. Pos One 8 (7): e68791 DOI: https://doi.org/10.1371/journal.pone.0068791

Weber E., Blackstone K., Iudicello J. E., Morgan E. E., Grant I., Moore D. J. y Woods S. P. (2012). Neurocognitive deficits are associated with unemployment in chronic methamphetamine users. Drug and Alcohol Dependence, 125, 146– 153. DOI: https://doi.org/10.1016/j.drugalcdep.2012.04.002

Wise R. A. y Koob G. F. (2014). The Development and Maintenance of Drug Addiction. Neuropsychopharmacology. 39; 254–262 DOI: https://doi.org/10.1038/npp.2013.261

Zombeck J. A., Chen G. T., Johnson Z. V. (2008). Neuroanatomical specificity of conditioned responses to cocaine versus food in mice. Physiol Behav, 93(3), 637-650. DOI: https://doi.org/10.1016/j.physbeh.2007.11.004

Publicado

2023-10-11

Cómo citar

Fernández Ruiz, P. A., Cruz-Zúñiga, N., Hernández Vergara, C. I., Martínez Alvarado, J. R., Chávez Flores, Y. V., & Magallanes-Rodríguez, A. G. (2023). Deterioro cognitivo inducido por la adicción, el caso de la metanfetamina. Horizon Interdisciplinary Journal, 1(2), 45–53. https://doi.org/10.56935/hij.v1i2.18

Número

Sección

Perspectivas

Categorías

Artículos más leídos del mismo autor/a

Artículos similares

También puede {advancedSearchLink} para este artículo.